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Powerful relativistic electron beams with an energy of particles E ~ i MeV are consid- 
ered as one possible source of energy for producing a thermonuclear plasma in forward sys- 
tems. Energy can be transferred here to the plasma either directly by a powerful relativis- 
tic �9 electron beam or through multicharge ions collectively accelerated in such a beam [i]. 
Of considerable interest in either case is information about changes in the energy distribu- 
tion of electrons in the original beam. A strong magnetic field, usually also present in 
these systems, makes it difficult to analyze the energy distribution of electrons with the 
aid of an electric and a magnetic field. In view of this, at the Institute of Nuclear Phys- 
ics (Siberian Branch of the USSR Academy of Sciences) a method is being developed for meas- 
uring the energy distribution of relativistic electrons with a nanosecond time resolution on 
the basis of the laws of electron retardation in a metal [2]. Two approaches are being con- 
sidered. The first involves measuring in the metal the depth profile of absorbed electrons, 
the second involves measuring the electron current flowing to the collector through metal 
foils of various thicknesses. Both approaches require a subsequent retrieval of the electron 
energy distribution function from a Fredholm-type integral equation of the first kind. 

Determination of the Energy Spectrum of Relativistic Electrons 
from Their Depth Profile of Absorption in a Metal 

The gist of this method is as follows. A beam of relativistic electrons impinges on a 
stack of n metal foils insulated from one another and is absorbed by them. The respective 
currents Ji,...,Jn of absorbed electrons are measured in the circuit of each foil. These cur- 
rents are then used for calculating the electron energy distribution function. 

The problem of determining the distribution function is solved as follows. We consider 
an electron beam normally incident on a plane metal surface. Let the function K(x, E) des- 
cribe the electron energy distribution function within the interval [El, Eu] over the depth 
x, these electrons having been thermalized prior to their absorption from a monoenergetic 
beam with energy E 6 [El, Eu]. For a beam with an arbitrary energy distribution of electrons 
(E), where E E [E/~ Eu] , the law of absorption in a metal can then be expressed as 

dJ(x,  E) = ,]oF(x, E)cp(E)dxdE, (1) 
with x denoting the distance normal to the surface from the latter to a given depth, ~(E) 

denoting the electron energy distribution function for the original beam, j ~(E)dE =I; 
E l 

dJ denoting the current of electrons with energies within the interval (E, E + dE) absorbed 
within the distance (x, x + dx), and Jo denoting to total beam current. 

We now subdivide a metal specimen into n foils of thicknesses (xj+i -- xj). It then fol- 

lows from the law of absorption (i) that the j-th foil will absorb a fraction of the beam 
current equal to 

xj+1 Ell 
__ J] 

xj E l 

]=i, . . . ,  n .  
(2) 
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We next subdivide the energy interval [El, Eu] into n segments of E i (i = i, 2, ..., 
n + i), whereEx = E Z and En+, = E u. Replacin~ with a sum the integral with respect to en- 

ergy in expression (2) leads to a linear system of equations 

n 

L =-='~ Kj~(p~, i = t ,  . . . ,  n, (3) 
i = l  

where 

K j i  -~  

xj+l E~+I 

.f S K(x, e)de;   
xj Ei 

= tp(~;3; ~:i ~ [E~, E~+It. 

The solution to the system (3) is 

i = :  I,: . . . , :  n ,  

where M is the inverse of matrix K (M = K-a). 

Let usestimate the error of this solution, Inasmuch as the fraction fj is determined 
experimentally from measurement of the currents in the foils, it obviously differs by some 
amount from the true value, 

/ n ) l /n  
Let sj be the rms error of an fj determination and s = (~sj We introduce the 

notation gj = (s/sj)fj, Ljl = (s/sj)Kji , i, j = i, ...,n. 

Then system (3) becomes 

• L j d p i  = g j ,  1 = l,: . . . .  n. ( 4 )  
i=l  

According to the results in [3], the error of determination of the i-th component of 
vector @ can be estimated as 

= S 2 [ ( L * / ) - l l i i , :  (Yi 

where Lij = Lji , and the mean-square error of the entire solution is 

o ~-- ~- o~ = TSP [(L*L)-q ---~ . , 
i=l = " 

(5) 

2 
wher eli are the eigenvalues of matrix L*L. 

2 When all eigenvalues X i satisfy the condition k i ~ i, therefore, then the mean-square 

error of o 2 of the solution does not exceed the experimental error s =, When even only one 
�9 2 <  

elgenvalue is li < I/nt however, then the error of the retrxeved solution becomes so large 
that the solution to system of equations (4) will be entirely meaningless. 

Inasmuch as the elements of matrix L*L and thus also its elgenvalues are determined by 
the points of subdivisions xl, ...,Xn+1 and EI,...,En+~ , it must be possible to optimize 
these subdivisions. We select the scheme of subdivision which will result in the minimum 

value of ~.%r~ ~=i '" This will greatly reduce the error of retrieval of the electron energy dis- 

tribution function ~(E). The retrieval error will, however, still be rather large. 

The error of retrieval of the distribution function could be further reduced by the 
method of statistical regularlzation, widely used for the solving of Fredholm integral equa- 
tions of the first kind [3]. 
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This method consists of replacing the exact equations in system (4) with approximate 
(regularized) ones. Such a replacement corresponds to introducing additional information 
about the solution by way of stipulating its a priori probability dlstribution~ In our case 
this additional information can serve as an assumption about the boundedness of the electron 
energy distribution function @(E). 

Let the approximate value of the norm of vector @(E) be given as 

Eu 

[r [ = .!' ~ 2 ( E ) d E ~ .  (6) 

R e p r e s e n t i n g  t h e  i n t e g r a l  i n  e x p r e s s i o n  (6) as  a sum, we can o b t a i n  an e x p l i c i t  e x p r e s -  
s i o n  f o r  t h e  f u n c t i o n  o f  norm ~. I n d e e d ,  l e t t i n g  

i , j  : .1  

we f i n d  t h a t  Ri j  = 6iJ  ( E i + ~ -  E i ) '  

As has  be en  shown a l r e a d y  [ 3 ] ,  t h e  r e g u l a r i z e d  s o l u t i o n @  ~ to  s y s t e m  o f  e q u a t i o n s  (4) 
which  s a t i s f i e s  c o n d i t i o n  (6) i s  t h e  s o l u t i o p  to  sy s t em  

(L*L ~, r = L 'g ,  (7) 

w i t h  t h e  r e g u l a r i z a t i o n  p a r a m e t e r  a = n / ~ ,  P a r a m e t e r  ~ can be  d e t e r m i n e d  a p p r o x i m a t e l y ,  a s -  
suming a s u f f i c i e n t l y  smooth @(E) f u n c t i o n  and p r o c e e d i n g  as  f o l l o w s ,  C o n d i t i o n  (6) y i e l d s  

where e~-- 

Ei+l  

i" '~ (E) dE. 
Ei 

E u 

EZ ~ z~+~ - E i ~ (o, 
(s) 

Since .~ ei = I 

which m can vary: 

and, consequently, 0 ~ei~ i, expression (8) yields the range within 

Eti -- E! ~ C0 ~ ~nin (Ei+ 1 -- Ei)" 
i 

Therefore, the range of allowable values of the regularization parameter ~ is 

n min ( E i +  1 - -  E 0 .~ ~ ~ n (E u -  El). (9) 
i 

The e r r o r  o f  r e t r i e v a l  o f  t h e  i - t h  component  o f  v e c t o r  ~a  a c c o r d i n g  t o  t h e  s y s t e m  o f  
e q u a t i o n s  (7) w i l l  be e x p r e s s e d  as  

~ = s 2 [(L*L -~ =s29)-q{i. (10) 

Th i s  l e v e l  o f  e r r o r  i s  s u f f i c i e n t l y  low so as  to  a l l o w  u s i n g  t h e  s o l u t i o n  to  s y s t e m  (7) 
as  t h e  e l e c t r o n  e n e r g y  d i s t r i b u t i o n  f u n c t i o n ,  

The s a i d  p r o c e d u r e  o f  d e t e r m i n i n g  t h e  e l e c t r o n  e n e r g y  d i s t r i b u t i o n  f u n c t i o n  was i m p l e -  
mented  on a model  BESM-6 h i g h - s p e e d c o m p u t e r .  M a t r i x K j i o f  t h e s y s t e m o f e q u a t i o n s  (3 )was  con -  
s t r u c t e d  with the aid of tables [4] of calculated data C haracterizlng the distribution of 
thermalized electrons in aluminum corresponding to initial electron energlesof 0.i, 0.3, 
0.5, 0,7, and 1.3 MeV. The graph of function K(x, E) plotted from these tables for energies 
of 0.1, 0,5, and 1.0 MeV is shown in Fig. i (points 1-3, respectively), We note that, upon 
normalization of the thickness x of the material with respect to the extrapolated mean free 
path Ro(E), the K(x, E) curves for various energies coincide within ~I0% and, consequently, 
the function K(x, E) can as accurately be represented by the function K(~), where ~ = x/Ro(E), 
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TABLE i 

c; 
Z 

0 
tt~ i 

C u r r e n t  of electrons absorbed 
by the foils 

0.3 andO.5 MeV 0.5 and 0.7 MeV 

112 
83 
89 

100 
150 
200 
225 
355 

5000 

j, jr, 

0,172 0,171 
0,208 0,208 
0,210 0,206 
O, 130 O, 132 
O, 132 O, 128 
0,065 0,065 

2. l0 -a 6. l0 -a 
0 ~ 10 -5 
0 

j, jtv 

0,072 0,071 
0,078 O,077 
O, 105 O, 106 
0,142 0,142 
0,219 0,218 
0,190 O,191 
0,095 0,094 

.023 0,024 
10-4 

Integration with respect to x, for constructing the K~i matrix, was performed according 
to Simpson's rule in i0 "z (xj+z/Ro(E) --xj/Ro(E)) steps fo~ the j~th interval (j = i, .,.,9). 

The integral with respect to energy was replaced with the algebraic expression 

I (Ei+~)I (E~+z--  Ez), i = t, 9, Kji " T [ K ~ ( E i )  + Kj . . . .  , 

with x~+Ic dx 
K j ( E O  = . / . . . .  

~j 
The values of function K(x, E) at intermediate energy levels and intermediate coordinate 

points not listed in the tables [4] were calculated by quadratic interpolation. The value 
of Ro(E) for aluminum was determined according to the approximation [5] 

0.9878 
Ro(E ) = 0 . 6 6 1 E ( i .  l ~ } '  (ii) 

with the energy of electrons E in MeV and the extrapolated mean free path Ro in g/cm 2. 

The optimum subdivision into foll thicknesses and energy intervals, the latter within 
the 0.15-1.I-MeV range,was found as a result of computer-aided sifting of variants and search 
for the subdivision scheme with the minimum error of solution (5). On the resultant optimum 
system of linear equations we then performed a statistical regularlzatlon of its solution. 
This required determining the range of allowable values of the regularizatlon parameter a ac- 
cording to expression (9) and then constructing the regularized system of equations (7). 

658 



The program was checked as follows. The currents in foils corresponding to a superpos- 
ition of polyenergetic beams with a given energy were calculated according to Eqs. (2). These 
currents, with an rms error of 5-10%, were used as the input data for solving the system (7). 
The error of the resulting solution was estimated according to Eq. (i0). The distribution 
function obtained in the process was compared to the original one. The form of the deter- 
mined distribution was found to depend strongly on the value of the regularization parameter 
=. When ~ = n(E u -- EZ) ~ 9 MeV, then the solution to system (7) depends weakly on E and ap- 
proaches the constant value ~(E) = I/(E -- ET) ~ 1/9 MeV-*. As ~ is decreased, the solution 
approaches the original distribution function and the result based on e = n min (Ei+1 -- Ei)-- 

0.45 MeV becomes finally acceptable. In this case the currents in foils calculated by inte- 
gration of the original distribution function (current J') closely approach the distribution 
function obtained in the process of solving system (7) (current J"). For comparison, in Ta- 
ble 1 the values of currents are given and in Fig. 2 are shown the distrlbutlon functions 
corresponding to an original distribution function selected as a superposition of two identi- 
cal monoenergetic beams: 0.3 and 0.5 MeV in one example, 0.5 and 0.7 MeV in another. These 
energies have been indicated in Fig. 2 by arrows. The solution was sought as follows. First 
the entire energy range of 0.1-1.2 MeV was subdivided into nine intervals. A system of equa- 
tions (7) was then constructed and the distribution function was calculated. Along the en- 
ergy axis was demarcated only the range within which the calculated function differed from 
zero. For this range we again constructed and solved a system (7). The resolving power of 
system (7) can be greatly improved in this way. According to the diagram in Fig. 2, an en- 
ergy resolution of ~0.10 MeV is attainable with only nine foils. 

As a practical example of using this method, we will show measurements of the distribu- 
tion function in a relativistic electron beam within a pulse of T - 70-nsec duration after its 
passage through a plasma column, of a length ~ " 2 m and a density no ~ 3.1013 cm "s, bounded 
at both ends by 50-~m-thick titanium foils [6]. The scheme of measurements has already been 
thoroughly described in an earlier study [2]. The thicknesses of foils as well as the cur- 
rents* jv of electrons absorbed by these foils and measured at two instants of time are given 
in Table 2. The voltage across the anode-cathode gap in the accelerator, at the instant of 
beam formation, was in those two cases 0,8 and 0,6 MV, respectively. From the current read- 
ings have been calculated distribution functions, histograms of which are shown in Fig. 3 
(i refers to 0.8 MeV, 2refers to 0.6 MeV). It is evident here that the original beam (initial 
energy indicated by an arrow) loses a large fraction of its energy (~20%), which agrees with 
the results obtained by other methods of estimating its total losses [6]. 

Interestingly enough, a multifoil analyzer of the electron energy spectrum was used in 
another study [7] and there the energy distribution was determined without time resolution. 
The authenticity of the electron energy spectrum obtained was checked by comparing it with 
measurements of the energy distribution made with a magnetic analyzer. The results obtained 
by both these independent methods were found to be in close agreement. In that study [7] as 
well as in this study here the distribution function K(x, E) of thermalized electrons was 
taken from [4]. 

Determination of the Energy Spectru m of Relativistic Electrons 
from the Electron Flux Attenuated by Aluminum Foils 

The second approach to determining the energy of relativistic electrons is based on 
measuring the attenuation of the electron flux by metal foils of various thicknesses. The 
procedure for such an experiment is as follows. On a Faraday cylinder made of graphite im- 
pinges a beam of relativistic electrons. In the path of this beam, before the graphite cyl- 
inder, is placed an aluminum foil. As the thickness of this foil is increased, the current 
recorded by the Faraday cylinder decreases. 

It has been shown experimentally [8] that such an attenuation of the beam by a metal is 
universal in nature in the case of a monochromatic beam of relativistic electrons within the 
0.15 s E s I-MeV energy range. This means that the electron transmission coefficient K'(x, 
E) can he represented as a function of the single argument ~ = x/R(E), with R(E) denoting 
the depth of total absorption of electrons with energy E. The normalizing length R(E) was 
calculated according to the expression for ionization losses [9]. We note that Eq. (ii) [5] 

*The accuracy of these measurements was determined by the error in calibrating the relative 
sensitivity of the recording channels (7%) and the errer in reading the oscillograms (4%). 
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TABLE 2 

1 100 
2 100 
3 100 
4 I00 
5 100 
6 100 
7 200 
8 200 
9 5000 

Current of electrons absorbed by 
the foils 

0,8 MeV 
j, jIr 

0,164 0,163 
0,109 0,119 
0,128 0,122 
0,105 0,095 
0,096 0,097 
0,077 0,096 
0,189 0,176 
0,088 0,094 
0,044 0,043 

I 0,6 MeV 
�9 k 

j ,  J "  

0,183 0,176 
0,219 0,223 . 
0,167 0,167 
0,150 0,143 
0,092 0,099 
0,071 0,075 
0,079 0,081 
0,029 0,030 
0,010 0,010 

Note. J" are the currents in foils 
obtained by integrating, according 
to Eq. (2), the calculated distribu- 
tion function. 
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Fig. 3 Fig. 4 

for the depth of total absorption yields a result close to the result for the 0,03-5-MeV 
range [9] within a few percent, The universal curve of the transmission coefficient K'(~) for 
aluminum is shown in Fig. 4, 

The universality of K'(~) was utilized in another study [10] for measuring the energy 
of electrons in a steady monoenergetic beam on the basis of their passage through a foil 
of given thickness x~. From the attenuation of the beam by the foil was, according to the 
curve in Fig. 4, determined the parameter ~ and from the latter the normalizing length R = 
x~/~. The energy of particles was calculated according to the expression 

E : 0,76R(1 + V t  + 0.69/R). 
An analogous procedure for a nonsteady monoenergetlc electron beam has been described in [II], 

A natural outgrowth of this method is its extension to a nonmonoenergetlc electron beam, 
With the beam parameters held invariant and the foll thickness changed, one performs n tests 
where current lj into the Faraday cylinder is measured for each thickness xj (j = i, .... ,n), 
respectively, 

The beam current into the Faraday cylinder after passage through a foil of thickness xj 
is 

I~ = los  ( p ( E ) K ' ( ~ ) d E ,  
E l 

j ~ J~ ...~ #~ 

where @(E) denotes the electron energy distribution function, Let us subdivide the energy 
interval [El, Eu] into n segments by levels E i (i : i, ..,, n ~ 1), Assuming a sufficiently 
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smooth function ~(E), one can replace the integral wi~h a sum 

where 

fj. , 

/~ = 77 '  Kj~ = 

/j - ~ K j ~ ,  i=l,-..,n, 
i=l 

(12) 

E~ 

- , , K '  ~ dE ( i = t , . . . ,  n); ~i = ~(Ei); Ei ~ ['Ei-~, Ei]; Eo =Et: ;  E ,  =Eu.  
E ~ - I  

We thus  o b t a i n  a sys tem of  l i n e a r  equa t ions  analogous to system (3) .  System ( t2)  i s  
so lved  by the  same methods as system (3). 

We note that, in the case of a thick aluminum plate serving as electron collector, the 
data in [4] can be used for a numerical evaluation of the results, 

This method was used in the INAR apparatus for retrieving the energy spectrum of rela- 
tivistic electrons toward a beam, The experimental procedure has already been described 
[12], The counterflux of electrons at a plasma density no = 3,10 *s cm ~a was measured for 
various thicknesses of the attenuating foils (Fig. 5), The experimental points in Fig. 5 
correspond to a time of 7 nsec afterthe beginningof a pulse of countering electrons, The 
standard deviation at each point does not exceed 7%, From the measured attenuation of the 
electron flux was then calculated the energy distribution of electrons (Fig. 6)~ The error 
of retrieval of this distribution is -30%. 

Obviously, this method is suitable only for experiments with good repeatability of re- 
sults. One ofits advantages is the possibility of improving the energy resolution appreci- 
ably by increasing the number of tests. 

In the preceding considerations of the retrieval of the electron energy distribution 
there has not been touched upon the problem of the effect which angular spread of the elec- 
tron beam entering a foil-type analyzer has on the results of calculations, namely on the 
energy distribution function. The scheme of calculations included the absorption law refer- 
ring to electrons normally incident on a metal surface. This appears to be entirely justi- 
fied, inasmuch as calculations of the absorption of electrons with a Gaussian angular dis- 
tribution by aluminum have shown that only at angles (<8=>) ~/2 ~ 20 ~ does the absorption 
law begin to depart appreciably (~10%) from the curves in Figs. I and 4. In order to use 
the data in [4] and [8] for calculations, therefore, it is necessary to ensure in the ex- 
periment that the angular spread of the electron beam at the analyzer entrance be ~15 ~ In 
apparatus of the INAR type this is easily attained by adiabatic conversion of the transverse 
momentum of electrons to a longitudinal one in a tapering magnetic field at the exit from 
the "plugotron." We will mention a few more factors which must be considered in the design 
of a foil-type analyzer: the driving magnetic field in the apparatus, the intrinsic space 
charge of the beam, the mutual effect of adjacent foils on each other at high frequencies, 
and also the frequency band of the entire recording system. 
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ELECTRIC FIELD INTENSITY DUE TO AN ARC IN A 

DEVELOPED TURBULENT AIR STREAM 

M. F. Zhukov, I. M. Zasypkin, 
I, I. Mishne, and M. I. Sazonov 

UDC 537.523.004,5 

In plasmotrons with an interelectrode insert of sufficient relative length there evolve 
all three regions which characterize the flow of a gas through a tube (initial, transitional, 
and developed turbulent [i]). As is well known [i, 2], the electric field intensity of the 
arc differs in these regions. It is technically highest in the third channel region, much 
higher than in the initial one. Studies of the aerodynamics of gas flow through channels 
have contributed to the development of simple and highly efficient methods of controlling the 
length of the initial flow region and thus also that of the turbulent one, making it possible 
to intentionally influence the integral electrical characteristic of an arc -- the voltage. 
In view of this, there has arisen the necessity to generalize the electrical characteristic 
of an arc glowing in a developed turbulent stream, i,e,, to find how the electric field in- 
tensity of an arc in such a stream depends on the current, on the channel diameter, on the 
pressure, and on the gas flow rate, Such a generalization is important~ moreover, because 
plasmotrons with an interelectrode insert are now the most promising devices of this kind, 
not only on account of the high power that can be pumped into the arc but also on account 
of the efficient conversion of electric energy to heat. Meanwhile, however, most theoretical 
and experimental studies have dealt mainly with arcs glowing in a laminar gas stream. In 
real plasmotrons of linear configuration with gas~vortex stabilization of the arc, on the 
other hand, the Reynolds number of the stream is usually higher than critical [3], Several 
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